Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbes Infect ; : 105318, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460935

RESUMEN

Human immune responses to vaccination are variable both within and between populations. Systems vaccinology, which is the application of multi-omics technologies to vaccine studies, seeks to understand such variation and predict responses to optimise vaccine strategies. Here, we outline new approaches to systems vaccinology, focusing on the incorporation of additional cohorts, endpoints and technologies.

2.
Curr Opin Immunol ; 80: 102267, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462263

RESUMEN

The human liver mediates whole-body metabolism, systemic inflammation and responses to hepatotropic pathogens. Hepatocytes, the most abundant cell type of the liver, have critical roles in each of these activities. The regulation of metabolic pathways, such as glucose metabolism, lipid biosynthesis and oxidation, influences whole-organism functionality. However, the immune potential of the liver in general and hepatocytes in particular is also determined by metabolic ability. The major shifts in cellular metabolism required to drive activity in immune cells are now well-described. Given the unique functions of hepatocytes in systemic metabolism and inflammation, and their ability to mediate local antiviral innate immunity, the metabolic shifts required to facilitate these activities are likely to be complex and challenging to define. In this review, we explore what is known about the complex metabolic rewiring required for hepatocytes to respond appropriately to viral infection. We also discuss how viruses can manipulate hepatocyte metabolism to facilitate infection.


Asunto(s)
Hepatocitos , Inmunidad Innata , Virosis , Humanos , Hepatocitos/inmunología , Inflamación/metabolismo , Hígado , Virosis/inmunología
3.
Cell Rep Med ; 3(11): 100804, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334594

RESUMEN

Natural resistance to infection is an overlooked outcome after hepatitis C virus (HCV) exposure. Between 1977 and 1979, 1,200 Rhesus D-negative Irish women were exposed to HCV-contaminated anti-D immunoglobulin. Here, we investigate why some individuals appear to resist infection despite exposure (exposed seronegative [ESN]). We screen HCV-resistant and -susceptible donors for anti-HCV adaptive immune responses using ELISpots and VirScan to profile antibodies against all know human viruses. We perform standardized ex vivo whole blood stimulation (TruCulture) assays with antiviral ligands and assess antiviral responses using NanoString transcriptomics and Luminex proteomics. We describe an enhanced TLR3-type I interferon response in ESNs compared with seropositive women. We also identify increased inflammatory cytokine production in response to polyIC in ESNs compared with seropositive women. These enhanced responses may have contributed to innate immune protection against HCV infection in our cohort.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Femenino , Receptor Toll-Like 3/genética , Hepatitis C/tratamiento farmacológico , Antivirales
4.
Nat Commun ; 13(1): 7254, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434007

RESUMEN

Host immunity to infection with SARS-CoV-2 is highly variable, dictating diverse clinical outcomes ranging from asymptomatic to severe disease and death. We previously reported reduced type I interferon in severe COVID-19 patients preceded clinical worsening. Further studies identified genetic mutations in loci of the TLR3- or TLR7-dependent interferon-I pathways, or neutralizing interferon-I autoantibodies as risk factors for development of COVID-19 pneumonia. Here we show in patient cohorts with different severities of COVID-19, that baseline plasma interferon α measures differ according to the immunoassay used, timing of sampling, the interferon α subtype measured, and the presence of autoantibodies. We also show a consistently reduced induction of interferon-I proteins in hospitalized COVID-19 patients upon immune stimulation, that is not associated with detectable neutralizing autoantibodies against interferon α or interferon ω. Intracellular proteomic analysis shows increased monocyte numbers in hospitalized COVID-19 patients but impaired interferon-I response after stimulation. We confirm this by ex vivo whole blood stimulation with interferon-I which induces transcriptomic responses associated with inflammation in hospitalized COVID-19 patients, that is not seen in controls or non-hospitalized moderate cases. These results may explain the dichotomy of the poor clinical response to interferon-I based treatments in late stage COVID-19, despite the importance of interferon-I in early acute infection and may guide alternative therapeutic strategies.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Proteómica , SARS-CoV-2 , Interferón-alfa , Antivirales , Autoanticuerpos
5.
Cell Rep ; 39(13): 110989, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35767946

RESUMEN

The interleukin-12 (IL-12) family comprises the only heterodimeric cytokines mediating diverse functional effects. We previously reported a striking bimodal IL-12p70 response to lipopolysaccharide (LPS) stimulation in healthy donors. Herein, we demonstrate that interferon ß (IFNß) is a major upstream determinant of IL-12p70 production, which is also associated with numbers and activation of circulating monocytes. Integrative modeling of proteomic, genetic, epigenomic, and cellular data confirms IFNß as key for LPS-induced IL-12p70 and allowed us to compare the relative effects of each of these parameters on variable cytokine responses. Clinical relevance of our findings is supported by reduced IFNß-IL-12p70 responses in patients hospitalized with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or chronically infected with hepatitis C (HCV). Importantly, these responses are resolved after viral clearance. Our systems immunology approach defines a better understanding of IL-12p70 and IFNß in healthy and infected persons, providing insights into how common genetic and epigenetic variation may impact immune responses to bacterial infection.


Asunto(s)
Interferón beta , Interleucina-12 , Receptor Toll-Like 4 , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Interferón beta/inmunología , Interferón beta/metabolismo , Interleucina-12/inmunología , Interleucina-12/metabolismo , Lipopolisacáridos/farmacología , Proteómica , SARS-CoV-2/inmunología
6.
Genes Immun ; 23(2): 93-98, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35428875

RESUMEN

The Rhesus D antigen (RhD) has been associated with susceptibility to several viral infections. Reports suggest that RhD-negative individuals are better protected against infectious diseases and have overall better health. However, potential mechanisms contributing to these associations have not yet been defined. Here, we used transcriptomic and genomic data from the Milieu Interieur cohort of 1000 healthy individuals to explore the effect of Rhesus status on the immune response. We used the rs590787 SNP in the RHD gene to classify the 1000 donors as either RhD-positive or -negative. Whole blood was stimulated with LPS, polyIC, and the live influenza A virus and the NanoString human immunology panel of 560 genes used to assess donor immune response and to investigate sex-specific effects. Using regression analysis, we observed no significant differences in responses to polyIC or LPS between RhD-positive and -negative individuals. However, upon sex-specific analysis, we observed over 40 differentially expressed genes (DEGs) between RhD-positive (n = 384) and RhD-negative males (n = 75) after influenza virus stimulation. Interestingly these Rhesus-associated differences were not seen in females. Further investigation, using gene set enrichment analysis, revealed enhanced IFNγ signalling in RhD-negative males. This amplified IFNγ signalling axis may explain the increased viral resistance previously described in RhD-negative individuals.


Asunto(s)
Virus de la Influenza A , Femenino , Humanos , Inmunidad , Lipopolisacáridos , Masculino
7.
Heliyon ; 8(4): e09230, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386227

RESUMEN

SARS-CoV-2 infection causes a wide spectrum of disease severity. Identifying the immunological characteristics of severe disease and the risk factors for their development are important in the management of COVID-19. This study aimed to identify and rank clinical and immunological features associated with progression to severe COVID-19 in order to investigate an immunological signature of severe disease. One hundred and eight patients with positive SARS-CoV-2 PCR were recruited. Routine clinical and laboratory markers were measured, as well as myeloid and lymphoid whole-blood immunophenotyping and measurement of the pro-inflammatory cytokines IL-6 and soluble CD25. All analysis was carried out in a routine hospital diagnostic laboratory. Univariate analysis demonstrated that severe disease was most strongly associated with elevated CRP and IL-6, loss of DLA-DR expression on monocytes and CD10 expression on neutrophils. Unbiased machine learning demonstrated that these four features were strongly associated with severe disease, with an average prediction score for severe disease of 0.925. These results demonstrate that these four markers could be used to identify patients developing severe COVID-19 and allow timely delivery of therapeutics.

8.
Pathogens ; 11(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35335630

RESUMEN

Infections caused inadvertently during clinical intervention provide valuable insight into the spectrum of human responses to viruses. Delivery of hepatitis C virus (HCV)-contaminated blood products in the 70s (before HCV was identified) have dramatically increased our understanding of the natural history of HCV infection and the role that host immunity plays in the outcome to viral infection. In Ireland, HCV-contaminated anti-D immunoglobulin (Ig) preparations were administered to approximately 1700 pregnant Irish rhesus-negative women in 1977-1979. Though tragic in nature, this outbreak (alongside a smaller episode in 1993) has provided unique insight into the host factors that influence outcomes after HCV exposure and the subsequent development of disease in an otherwise healthy female population. Despite exposure to highly infectious batches of anti-D, almost 600 of the HCV-exposed women have never shown any evidence of infection (remaining negative for both viral RNA and anti-HCV antibodies). Detailed analysis of these individuals may shed light on innate immune pathways that effectively block HCV infection and potentially inform us more generally about the mechanisms that contribute to viral resistance in human populations.

9.
Front Immunol ; 12: 757249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917078

RESUMEN

Type I interferons (IFN-I) and their cognate receptor, the IFNAR1/2 heterodimer, are critical components of the innate immune system in humans. They have been widely explored in the context of viral infection and autoimmune disease where they play key roles in protection against infection or shaping disease pathogenesis. A false dichotomy has emerged in the study of IFN-I where interferons are thought of as either beneficial or pathogenic. This 'good or bad' viewpoint excludes more nuanced interpretations of IFN-I biology - for example, it is known that IFN-I is associated with the development of systemic lupus erythematosus, yet is also protective in the context of infectious diseases and contributes to resistance to viral infection. Studies have suggested that a shared transcriptomic signature underpins both potential resistance to viral infection and susceptibility to autoimmune disease. This seems to be particularly evident in females, who exhibit increased viral resistance and increased susceptibility to autoimmune disease. The molecular mechanisms behind such a signature and the role of sex in its determination have yet to be precisely defined. From a genomic perspective, several single nucleotide polymorphisms (SNPs) in the IFN-I pathway have been associated with both infectious and autoimmune disease. While overlap between infection and autoimmunity has been described in the incidence of these SNPs, it has been overlooked in work and discussion to date. Here, we discuss the possible contributions of IFN-Is to the pathogenesis of infectious and autoimmune diseases. We comment on genetic associations between common SNPs in IFN-I or their signalling molecules that point towards roles in protection against viral infection and susceptibility to autoimmunity and propose that a shared transcriptomic and genomic immunological signature may underlie resistance to viral infection and susceptibility to autoimmunity in humans. We believe that defining shared transcriptomic and genomic immunological signatures underlying resistance to viral infection and autoimmunity in humans will reveal new therapeutic targets and improved vaccine strategies, particularly in females.


Asunto(s)
Enfermedades Autoinmunes/genética , Interferón Tipo I/inmunología , Transcriptoma , Virosis/genética , Enfermedades Autoinmunes/inmunología , Autoinmunidad/genética , Autoinmunidad/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Predisposición Genética a la Enfermedad/genética , Humanos , Interferón Tipo I/fisiología , Masculino , Polimorfismo de Nucleótido Simple , Receptor de Interferón alfa y beta/genética , Selección Genética , Caracteres Sexuales , TYK2 Quinasa/genética , Receptor Toll-Like 3/genética , Virosis/inmunología , Inactivación del Cromosoma X
10.
PLoS One ; 15(11): e0240784, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33166287

RESUMEN

Fatigue is a common symptom in those presenting with symptomatic COVID-19 infection. However, it is unknown if COVID-19 results in persistent fatigue in those recovered from acute infection. We examined the prevalence of fatigue in individuals recovered from the acute phase of COVID-19 illness using the Chalder Fatigue Score (CFQ-11). We further examined potential predictors of fatigue following COVID-19 infection, evaluating indicators of COVID-19 severity, markers of peripheral immune activation and circulating pro-inflammatory cytokines. Of 128 participants (49.5 ± 15 years; 54% female), more than half reported persistent fatigue (67/128; 52.3%) at median of 10 weeks after initial COVID-19 symptoms. There was no association between COVID-19 severity (need for inpatient admission, supplemental oxygen or critical care) and fatigue following COVID-19. Additionally, there was no association between routine laboratory markers of inflammation and cell turnover (leukocyte, neutrophil or lymphocyte counts, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, C-reactive protein) or pro-inflammatory molecules (IL-6 or sCD25) and fatigue post COVID-19. Female gender and those with a pre-existing diagnosis of depression/anxiety were over-represented in those with fatigue. Our findings demonstrate a significant burden of post-viral fatigue in individuals with previous SARS-CoV-2 infection after the acute phase of COVID-19 illness. This study highlights the importance of assessing those recovering from COVID-19 for symptoms of severe fatigue, irrespective of severity of initial illness, and may identify a group worthy of further study and early intervention.


Asunto(s)
Infecciones por Coronavirus/patología , Fatiga/etiología , Neumonía Viral/patología , Adulto , Anciano , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/virología , Fatiga/epidemiología , Femenino , Humanos , Subunidad alfa del Receptor de Interleucina-2/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/virología , Prevalencia , SARS-CoV-2 , Índice de Severidad de la Enfermedad
11.
Nature ; 568(7750): 135, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30923361
12.
Sci Rep ; 9(1): 4034, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858427

RESUMEN

Inflammation and metabolism are intricately linked during inflammatory diseases in which activation of the nucleotide-binding domain-like receptors Family Pyrin Domain Containing 3 (NLRP3) inflammasome, an innate immune sensor, is critical. Several factors can activate the NLRP3 inflammasome, but the nature of the link between NLRP3 inflammasome activation and metabolism remains to be thoroughly explored. This study investigates whether the small molecule inhibitor of the NLRP3 inflammasome, MCC950, modulates the lipopolysaccharide (LPS) -and amyloid-ß (Aß)-induced metabolic phenotype and inflammatory signature in macrophages. LPS + Aß induced IL-1ß secretion, while pre-treatment with MCC950 inhibited this. LPS + Aß also upregulated IL-1ß mRNA and supernatant concentrations of TNFα, IL-6 and IL-10, however these changes were insensitive to MCC950, confirming that MCC950 specifically targets inflammasome activation in BMDMs. LPS + Aß increased glycolysis and the glycolytic enzyme, PFKFB3, and these effects were decreased by MCC950. These findings suggest that NLRP3 inflammasome activation may play a role in modulating glycolysis. To investigate this further, the effect of IL-1ß on glycolysis was assessed. IL-1ß stimulated glycolysis and PFKFB3, mimicking the effect of LPS + Aß and adding to the evidence that inflammasome activation impacts on metabolism. This contention was supported by the finding that the LPS + Aß-induced changes in glycolysis and PFKFB3 were attenuated in BMDMs from NLRP3-deficient and IL-1R1-deficient mice. Consistent with a key role for PFKFB3 is the finding that the PFKFB3 inhibitor, 3PO, attenuated the LPS + Aß-induced glycolysis. The data demonstrate that activation of the NLRP3 inflammasome, and the subsequent release of IL-1ß, play a key role in modulating glycolysis via PFKFB3. Reinstating metabolic homeostasis by targeting the NLRP3 inflammasome-PFKFB3 axis may provide a novel therapeutic target for treatment of acute and chronic disease.


Asunto(s)
Glucólisis/efectos de los fármacos , Inflamasomas , Inflamación/inmunología , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR , Fosfofructoquinasa-2/metabolismo , Péptidos beta-Amiloides , Animales , Células Cultivadas , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Indenos , Inflamasomas/antagonistas & inhibidores , Inflamasomas/fisiología , Inflamación/inducido químicamente , Interleucina-1beta/inmunología , Lipopolisacáridos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Fosfofructoquinasa-2/antagonistas & inhibidores , Sulfonamidas , Sulfonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...